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Abstract

Falls are a major cause of traumatic head injury in children. Understanding head kinematics during 

low height falls is essential for evaluating injury risk and designing mitigating strategies. 

Typically, these measurements are made with commercial anthropomorphic infant surrogates, but 

these surrogates are designed based on adult biomechanical data. In this study, we improve upon 

the state-of-the-art anthropomorphic testing devices by incorporating new infant cadaver neck 

bending and tensile data. We then measure head kinematics following head-first falls onto 4 

impact surfaces from 3 fall heights with occipital and parietal head impact locations. The 

biofidelic skull compliance and neck properties of the improved infant surrogate significantly 

influenced the measured kinematic loads, decreasing the measured impact force and peak angular 

accelerations, lowering the expected injury risk. Occipital and parietal impacts exhibited distinct 

kinematic responses in primary head rotation direction and the magnitude of the rotational 

velocities and accelerations, with larger angular velocities as the head rebounded after occipital 

impacts. Further evaluations of injury risk due to short falls should take into account the impact 

surface and head impact location, in addition to the fall height.
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1. Introduction

From 2001 to 2012 falls were the leading cause of nonfatal injury to infants (≤ 1 year) and 

accounted for over 45% of all injuries in this age group. (Melvin 1995) (Melvin 1995) 

(Melvin 1995) (Melvin 1995) (Melvin 1995) (Melvin 1995) (Melvin 1995) (Melvin 1995) 
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(Melvin 1995) Falls are also a commonly reported history in cases of suspected child abuse.

(Duhaime, Gennarelli et al. 1987, Duhaime, Alario et al. 1992, Strait, Siegel et al. 1995, 

Reece and Sege 2000) Accurate biomechanical data can be used to predict diffuse brain 

injuries (e.g. traumatic axonal injury and intracranial hemorrhage), focal contusions, and 

skull fracture.(Gennarelli, Thibault et al. 1982, Raghupathi and Margulies 2002, 

Yoganandan and Pintar 2004, Delye, Verschueren et al. 2007, Monea, Van der Perre et al. 

2014) Therefore, a detailed understanding of the biomechanics of low height falls can help 

distinguish between accidental fall and abusive head injury etiologies.

Custom and commercially available infant anthropomorphic surrogates have been 

previously used to investigate the biomechanics of low height falls.(Duhaime, Gennarelli et 

al. 1987, Prange, Coats et al. 2003, Coats and Margulies 2008, Thompson, Bertocci et al. 

2009, Thompson, Bertocci et al. 2013) However, the biofidelity of these surrogates was 

hindered by the paucity of infant neck tensile and bending stiffness data available at the time 

of their design. Neck designs in custom-made surrogates have included a hinge to represent 

a worst-case zero-resistance scenario,(Prange, Coats et al. 2003) a naturalistic but not 

necessarily biofidelic rubber neck,(Duhaime, Gennarelli et al. 1987) and a rope-based neck 

that was validated against a single infant cadaver cervical spine motion segment.(Coats and 

Margulies 2008) The commercial CRABI series of pediatric surrogates have neck bending 

properties based on geometrically scaled down adult cadaver data, but do not take into 

account any other age-related differences in bending stiffness. They also lack specifications 

for tensile neck properties.(Irwin 1997) With recent pediatric cadaver neck property data in 

tension and sagittal flexion/extension,(Luck, Nightingale et al. 2008, Luck 2012) we sought 

to improve the current state of the art infant anthropomorphic surrogate design by creating a 

more biofidelic neck, and better representing the properties of the intracranial contents. This 

surrogate was then used to measure the head kinematic response following falls onto a larger 

combination of impact surfaces, fall heights, and head impact locations than has been 

published previously. We analyze the influence of the biofidelic neck and head on the 

surrogate head kinematics by comparing results to those from our previous infant surrogate.

2. Methods

2.1 Anthropomorphic Surrogate Weight and Dimensions

The dimensions, weight distribution, body and limbs of a previously designed 1.5-month-old 

human infant anthropomorphic surrogate(Coats and Margulies 2008) was used as the 

starting point for the new surrogate head and neck design. The surrogate’s total head and 

body mass were matched to our previous surrogate (4.4kg,)The head mass was 1kg, giving a 

head-to-body ratio of 0.23, which is consistent with the measurements reported by Duhaime 

et. al. on 1-month-old infants.(Duhaime, Gennarelli et al. 1987) After completion, these 

weights approximately represented a 28th percentile male or 47th percentile female 1.5-

month-old infant according to CDC growth charts.(2000). Additional details on the 

anthropometry and development of the previous surrogate are reported elsewhere.(Coats and 

Margulies 2008)
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2.2 Head and Skull Case

As previously developed,(Coats and Margulies 2008) the surrogate skull was composed of 5 

copolymer polypropylene (Boston Brace International Inc.) plates attached together with 

silicone rubber (Smooth Sil 950, Smooth-On), and a 1-mm-thick latex cap was placed over 

the skull case to represent the scalp. The elastic modulus of copolymer polypropylene (535 ± 

139 MPa, mean ± SD) was comparable to the elastic modulus of human parietal bone from 

infants aged 1–2 months old (518 ± 180 MPa). Similarly, the elastic modulus of silicone 

rubber (2.1 ± 0.2 MPa) was comparable to that of coronal suture from infants aged 40 weeks 

gestation to 1 month old (4.7 ± 1.5 MPa).(Coats and Margulies 2006)

A triaxial angular velocity transducer with a bandwidth of 0.38 to 1000 Hz and linear 

acceleration sensitivity of less than 0.005 rad/s/g (ARS-06 Triaxial unit, ATA Sensors) was 

rigidly attached to a metal plate which extended rigidly from the top of the neck and was 

fixed in the center of the surrogate's head to measure sagittal, horizontal, and coronal 

angular velocities. The remaining space inside the skull case was filled with a linear 

viscoelastic silicone dielectric gel having a shear modulus of 765 ± 44 Pa, mean ± SD 

(Sylgard 527 A&B Silicone Dielectric Gel, Dow Corning, 1:1 A to B mix ratio).(Arbogast, 

Thibault et al. 1997, Gefen and Margulies 2004) This gel was used to represent human 

infant brain tissue, which was estimated to have a shear modulus of 559 Pa by scaling 

human adult brain properties by the adult-to-infant shear modulus ratio reported for piglet 

brain tissue.(Prange and Margulies 2002, Coats, Margulies et al. 2007).

To validate the biofidelity of the surrogate head, the head construct was subjected to 

anterior-posterior (AP) and right-left (RL) parallel plate compression tests and compared to 

published infant (1–11 days old) cadaver head stiffness values.(Prange, Luck et al. 2004) 

Mimicking the methods and data analysis used in the cadaver testing, the surrogate's head 

was compressed at fixed displacement rates of 0.05 mm/s and 1.0 mm/s to a total 

displacement of 5mm in each loading direction. The stiffness was calculated as the slope of 

the force-displacement curve from 50% to 100% of the displacement target. The surrogate 

exhibited highly linear force-displacement characteristics over this range with R2 values of 

0.99–1, which match well with the reported R2 values for the cadaver testing. At the 

quasistatic rate (0.05 mm/s), the surrogate and infant cadaver heads had similar compressive 

stiffness in both loading directions. At the higher rate, the infant cadaver was 4–5 times 

stiffer than the surrogate (Table 1).

Because the surrogate head had lower compressive stiffness at dynamic rates than the 

cadaver heads measured by Prange et al., an additional validation study was conducted to 

confirm that the peak impact forces measured by this surrogate were associated with 

incidence of skull fracture. To estimate conditions previously described by Weber for infant 

cadaver head drop experiments,(Weber 1984) we measured the peak impact force during a 

91 cm (3 ft) fall onto concrete with an occipital-parietal impact location using a force plate 

described later in Methods. Using the measured peak impact force as the input to a 

previously developed finite element model (FEM) of the infant head(Coats, Margulies et al. 

2007), we determined the peak maximum principal stress for each skull plate (left and right 

parietal and occipital). The probability of fracture for this peak principal stress was 

determined using published fracture risk curves based on the average infant parietal and 
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occipital bone ultimate stress data (27 MPa and 9 MPa respectively).(Coats and Margulies 

2006, Coats, Margulies et al. 2007) The FEM-simulated peak maximum principal stress was 

35.77 MPa in the parietal bone and 12.76 MPa in the occipital bone, which are associated 

with a 70% and 73% probability of fracture, respectively. This compares well with Weber’s 

drop test results on n=5 infant cadavers showing that 60% of the cadavers sustained occipital 

fractures and 80% had parietal fractures.(Weber 1984) We conclude after this detailed 

analysis that although the overall compressive stiffness of the head at dynamic rates is lower 

than Prange’s compression results, the peak impact forces measured by the surrogate in an 

occipital-parietal impact event lead to realistic predictions of fracture. It should also be 

noted that Prange et al. reports the infant cadaver head was not rate-dependent between 1–50 

mm/s. Therefore, any differences between the surrogate and cadaver head response are not 

likely to increase at higher rates.

2.3 Neck

The surrogate neck (Figure 1) was constructed by molding a 2.54 cm diameter cylinder of 

Ecoflex 00-30 super soft silicone rubber (SmoothOn) with a length of Chemical Resistant 

clear Tygon Tubing (McMaster-Carr, 1.6mm inner diameter, 4.8 mm outer diameter, 75A 

durometer rating) embedded in the center. This was then potted into two 3.8 cm-diameter 

plastic pipefittings using plaster, such that the flexible portion of the neck was 2.9 mm long. 

The silicone rubber allowed flexibility in all three rotational directions and the inner core of 

tubing dictated the tensile stiffness. To increase the bending stiffness in extension, three sets 

of double Neoprene rubber bands were added along the ventrolateral surface of the neck 

(0.8mm thick, 8 mm wide, 50A durometer rating).

The tensile properties of the surrogate neck were measured non-destructively by axially 

loading the neck at a fixed loading rate of 17 N/s up to a maximum load of 24 N for 5 

separate trials. The mechanical response of the neck was linear (R2=0.995 ± 0.002), and the 

tensile stiffness was defined as the slope between 7 N to 15 N. This matched the loading 

range analyzed by Luck et. al.. The published tensile stiffness of a 24-day-old infant 

cadaveric osteoligamentous whole cervical spine and the surrogate neck were 7.3 N/mm and 

5.5 ± 0.17 N/mm, respectively (Figure 1).(Luck, Nightingale et al. 2008)

The bending properties of the surrogate neck were measured by replicating the 

nondestructive bending tests performed by Luck.(Luck 2012) The neck was quasistatically 

loaded to 0.07 Nm in flexion and 0.2 Nm in extension, which resulted in ~30° angular 

displacement in each direction. The resulting bending stiffness of the neck was 3.05 ± 0.23 

mNm/deg in flexion and 7.03 ± 0.28 mNm/deg in extension. To compare the segmented 

spine cadaver data tested by Luck to the surrogate neck, the published stiffness function for 

each segment was evaluated at an age of 1.5-months-old. An effective whole cervical spine 

stiffness, Keff, was calculated using Eq [1] by assuming each segment acted as a spring in 

series with other segments. Ki is the stiffness of each segment.

Eq [1]
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Not all cervical spine motion segments were tested by Luck et. al. Therefore, a range of 

bending stiffness values were developed by first assuming that the missing motion segments 

had the same stiffness as the next lower tested segment, and then assuming that the missing 

segments were negligible to the effective response and eliminated from the series of spring. 

These assumptions yielded 2.6 to 4.3 mNm/deg in flexion and 4.4 to 7.2 mNm/deg in 

extension for the bending stiffness of a 1.5-month-old infant whole cervical spine. The 

surrogate bending stiffness values fall within these estimated ranges. The surrogate neck was 

not tested in lateral flexion/extension or axial torsion as no pediatric human data is available 

for validation.

2.4 Drop Testing Protocol

The instrumented infant anthropomorphic surrogate underwent a series of headfirst drop 

tests from 3 heights (30 cm (1 ft), 61 cm (2 ft), 91 cm (3 ft)) onto 4 surfaces (concrete, wood 

laminate, carpet with carpet pad, and crib mattress) with two head impact locations 

(occipital and parietal).

The laminate wood sample was constructed from 1.1-cm-thick self-locking planks with 1-

mm-thick underlayment attached (Academy Floor), which was then glued to a plywood base 

(1.8 cm thick), simulating the subfloor. The carpet and carpet pad were each 0.6 cm thick. 

The crib mattress was 15 cm thick with an innerspring structure, and its material properties 

have been described in detail previously.(Coats and Margulies 2008) All impact surfaces 

were clamped to a six degree of freedom force plate (Model FP4060-07, Bertec).

To evaluate a worst-case scenario, where the head impact is undiluted by previous or 

simultaneous contact with other body regions, the surrogate was positioned such that there 

was a clear head impact before any portion of the surrogate’s body began to impact. This 

type of event mimics a head-first fall from a table or couch where the head impacts the floor 

unimpeded, without the arms or other body parts “braking” the fall. The neck was placed in 

a neutral position by aligning the ears of the head with the shoulders and centering the nose 

and chin with the body. Panel A of Figures 2 and 3 depict the initial surrogate positions, 

where the entire body was angled, with the head pointing downward, at approximately 20 

degrees for occipital impacts (see also photograph in our previous publication (Coats and 

Margulies 2008)) and 30 degrees for parietal impacts. The initial body position was angled 

more sharply for parietal impacts so that the head impacted before the shoulder. If the body 

were angled to the same degree for occipital impacts, the impact location would no longer 

be on the occiput, but rather the posterior fontanel or along the sagittal suture. High-speed 

digital video (210 fps, Exilim EX-FC100, Casio) was used to verify a head first impact and 

to observe the kinematic response of the surrogate for the first few drops of each impact 

location. Care was taken to replicate the surrogate positioning on all drop tests

Ten drops were conducted for each combination of height, impact surface, and head impact 

location, resulting in a total of 240 drops. After every 5 drops the skull assembly was 

replaced and the doll’s head re-packed in order to incorporate uncontrolled variation in skull 

assembly construction and head packing into the measurements. The surrogate neck was 

routinely checked for damage. Damaged necks were replaced by new neck constructs. All 
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neck constructs were tested prior to use to ensure a < 10% variation in tensile and bending 

stiffness.

2.5 Data Analysis

Angular velocity in three directions and normal impact force were collected at 10,000 Hz 

using a data acquisition system (Labview, National Instruments). Angular velocities were 

cropped to include the first full head rotation. The signal processing standard, SAE J211 

specifies a fixed value, low-pass cutoff of 1 kHz for head accelerations of occupant 

surrogates in road vehicle impact tests. Because accelerations resulting from road vehicle 

impacts are often at higher rates than those resulting from short falls, we conducted a 

spectral analysis on each angular velocity trace and used the corner frequency of the power 

spectral density to define an impact specific cutoff frequency, which ranged from 83 Hz 

(mattress impacts) to 1760 Hz (concrete impacts). Using the impact specific cutoff 

frequency, the velocity traces were filtered with a 4th order, low-pass Butterworth filter. The 

filtered angular velocity data were differentiated to obtain angular acceleration. The peak 

angular acceleration and the largest peak-to-peak change in angular velocity (indicated by 

black dots on Figures 2 and 3) were extracted from the sagittal, coronal, and horizontal 

rotational directions for further analysis. A resultant peak angular velocity and acceleration 

was also calculated. Impact force data were not filtered.

Peak head impact force was easily identified and extracted from the force-time signal (panel 

B of Figures 2 and 3), except for impacts onto the crib mattress. The mattress was so 

compliant that the head did not begin to rebound before the body impacted, making it 

impossible to extract an accurate reading for isolated head impact forces on that surface. The 

overall peak force was extracted in these cases with the caveat that they would overestimate 

the force experienced by the head. The duration of head impact was defined as the non-zero 

force interval from head impact to head lift-off. In cases when the body impacted before 

head lift off, the time duration between head impact and peak force was extracted and 

doubled. Impact durations for falls onto the crib mattress were not calculated due to the 

reasons stated above.

Two-way ANOVAs with height and impact surface as the main effects were conducted for 

each impact location to evaluate significant differences in peak angular acceleration, peak-

to-peak angular velocity, impact force, and impact duration. Tukey-Kramer post-hoc testing 

was performed to determine significance among groups within each main effect. 

Distributions of the kinematic measurements were not normally distributed, so data was 

rank-transformed prior to analysis. Statistical significance was set at p<0.05.

3. Results

Fall direction affects the timing of the head kinematics. In occipital impacts (Figure 2), the 

head rotates slightly as it impacts the plate, resulting in a small negative angular velocity 

between points A and B. As impact continues with increasing linear acceleration and impact 

force, head rotation slows during deformation at impact. Then the head rolls at the point of 

impact, reversing head rotation direction and increasing velocity and acceleration before 

peak impact force at B. As the head rebounds after B, lifting off the plate by C, impact force 
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decreases and velocity plateaus, until the thorax impacts at C (0.2 sec), causing a sharp 

increase in the head’s rebound angular velocity and acceleration. The flatter surface of the 

head and larger lateral flexion at shoulder contact during parietal impacts (note larger 

negative velocity peak before B in Figure 3 than Figure 2) alters the kinematics between 

head contact and rebound from the surface (B and C). The flatter head surface increases 

contact friction and reduces rolling during impact, shortening the velocity plateau. Because 

the neck has little resistance to lateral bending, rebound rotation is hastened, with velocity 

peaking as the head lifts off the plate at C, and again as the shoulder impacts between C and 

D. Below, the values of peak impact force, acceleration, and velocity are compared across 

drop height and direction.

3.1 Peak Impact Force and Duration

Peak head impact force significantly increased (p<0.0001) and impact duration significantly 

decreased (p<0.0001) at greater drop heights for both occipital and parietal impact locations 

(Figure 4 and Table 2 and 3). Peak impact forces were similar for both parietal and occipital 

impact locations at each drop height. The impact duration for parietal falls was greater than 

occipital falls, but only at 30 cm. The largest mean head impact forces for parietal and 

occipital impact locations were 621 and 592 N, respectively, and occurred during the 91 cm 

drops onto concrete.

The peak head impact force and duration was significantly influenced by the impact surface 

(p<0.0001). Head impact forces on mattress were significantly lower than all other impact 

surfaces in both impact locations despite the fact that the force measurements for this 

surface were an overestimation of the actual head impact force (p<0.0001). The impact force 

was significantly lower on carpet than concrete (p<0.005), but there were no significant 

differences between concrete and hardwood laminate for both impact locations (Table 2). 

Impact force duration followed inverse trends to impact force. Duration was greatest for 

carpet, and not significantly different between laminate and concrete for occipital falls. 

Parietal falls were slightly different as laminate had significantly larger impact durations 

(p<0.0001) than concrete at 30 and 61 cm.

3.2 Peak Angular Acceleration

The drop impact location strongly influenced which head rotational directions had the 

highest peak angular accelerations (Figure 5). As expected, peak accelerations from occipital 

impacts were greatest in the sagittal direction followed by the coronal and lastly the 

horizontal direction. On average, sagittal accelerations were 2.4 times higher than coronal 

and coronal were 2 times higher than horizontal. For parietal impacts, the average peak 

accelerations were the largest in the coronal and sagittal directions, which had 

approximately the same magnitude (coronal: 2,830 rad/s2; sagittal: 2,424 rad/s2). Peak 

accelerations in the horizontal plane were 4.6 to 5.4 times lower than the accelerations in the 

other two planes.

Peak head angular acceleration in each rotational direction and the resultant acceleration 

were significantly affected by drop height for both impact locations (p<0.005, Figure 5). For 

occipital impacts, peak accelerations were significantly higher following 91 cm drops than 
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30 cm drops (p<0.002 Table 2), but there was no significant difference in resultant peak 

acceleration between 91 cm drops and 61 cm drops. However, for parietal impacts, drops 

from 91 cm resulted in significantly larger peak accelerations than those from 61 cm, which 

in turn were significantly larger than those from 30 cm for all directions, and the resultant (p 

<0.009, Table 3).

For occipital impacts, there was a significant effect of impact surface on angular 

acceleration in each rotational direction and on the resultant acceleration (p<0.0001). 

Concrete, laminate hardwood, and carpet had significantly higher peak angular accelerations 

than mattress (p<0.0001, Table 2). However, there were no significant differences between 

carpet and concrete. In contrast, for parietal impacts, the concrete and laminate had 

significantly higher peak accelerations than carpet, which in turn had significantly higher 

peak accelerations than the crib mattress (p<0.01).

3.3 Peak-to-Peak Change in Angular Velocity

The drop impact location highly influenced the direction of the head rotational response, 

represented by the peak-to-peak change (pk-pk) in angular velocity (Figure 6). Not 

surprisingly, for occipital impacts, the change in velocity was the largest in the sagittal 

direction, followed by the coronal direction, and lastly, the horizontal direction. On average, 

sagittal pk-pk velocity was 3.5 times higher than coronal, and coronal was 2.6 times higher 

than horizontal. In contrast, parietal impacts had the highest pk-pk velocity in the coronal 

direction, which was then followed closely by the sagittal direction. The horizontal direction 

once again had the smallest pk-pk velocities. The average change in velocity was only 1.5 

times higher in the coronal direction than the sagittal direction, but was 3.8 times higher in 

the sagittal direction than the horizontal direction.

For occipital impacts, the pk-pk velocity was significantly affected by drop height in the 

sagittal and coronal rotational planes (p<0.001), but not the horizontal (Table 2). The peak 

resultant velocity was also significantly affected by drop height (p<0.0001). The 91 cm and 

61 cm falls had significantly higher peak resultant angular velocities than 30 cm (p<0.01), 

but they did not have significantly different angular velocities from each other (Table 2).

In contrast, the peak resultant velocity for parietal impacts was significantly higher 

following drops from 91 cm than 61cm (p<0.002), which in turn had significantly higher 

velocity than 30 cm drops (p<0.0001). There were also significant effects of drop height on 

the pk-pk angular velocity in all three rotational directions with a parietal impact location 

unlike occipital impacts (p<0.0001, Table 3).

Impact surface significantly affected pk-pk and peak resultant angular velocity for both 

occipital and parietal impacts; crib mattress impacts exhibited significantly lower angular 

velocities than any of the other impact surfaces in each rotational direction and in the 

resultant (p<0.002). However, the angular velocity was not significantly different following 

carpet and concrete impacts for any rotational direction or impact location.
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4. Discussion

4.1 Effect of Head and Neck Design: Comparison to previously published surrogate data

The surrogate created in this study builds upon a previous surrogate (Coats and Margulies 

2008) that was used to measure the kinematics of low height falls with occipital impacts 

onto three surfaces (mattress, carpet pad, and concrete). The surrogate enhancements include 

(1) a more biofidelic neck based upon recent tensile and bending properties reported for 

cadaver infants, (2) intracranial material with a shear modulus similar to brain tissue, and (3) 

advanced instrumentation that directly measures three-dimensional angular velocity and 

impact force. This enhanced design was then used to investigate additional impact surfaces 

(mattress, carpet and carpet pad, laminate hardwood, concrete) and two different locations of 

head impact (occipital, parietal).

Comparing the occipital impacts onto concrete from the present study to those published 

with the previous surrogate, we found that impact forces, angular accelerations, and 

velocities were generally lower in the more biofidelic surrogate. The range of impact forces 

in the present study ranged from 288 N at 30 cm to 621 N at 91 cm, while the previous 

impact forces ranged from 316 N at 30 cm to 1324 N at 91 cm. Correspondingly, the range 

of sagittal plane angular accelerations and velocities from the previous study were 4,500–

16,596 rad/s2 and 21–115 rad/s, respectively, while the range of sagittal plane angular 

accelerations and velocities for the present study were 2,777–3,632 rad/s2 and 44–49 rad/s, 

respectively. The changes in the surrogate neck alone do not explain the measured 

differences in angular acceleration and velocity from our previous surrogate. The increased 

biofidelity of the neck decreased the overall sagittal plane bending stiffness by 

approximately 2.2 times in flexion and 3.6 times in extension. Intuitively, this decrease in 

stiffness would have increased the angular acceleration and velocity of the head. Therefore, 

we conclude that the overall decrease in the kinematic parameters was overshadowed by the 

increased compliance of the head and possibly variations in the starting position of the 

surrogate.

The peak impact force was also influenced most by the change in compliance of the head. 

The previous surrogate had larger intracranial instrumentation and required that packets of 

lead balls be secured inside the head to reach the appropriate head mass. In the present 

study, the intracranial instrumentation had a smaller footprint and a silicone gel with shear 

properties similar to brain tissue was used to fill the void. This resulted in an overall more 

compliant head in the updated surrogate that increased the time of deceleration upon impact 

and lowered impact forces. The shear modulus of the silicone gel was slightly higher than 

the estimated shear modulus for infant brain (765 Pa vs 559 Pa). Based on parametric finite 

element simulations of infant head impact (Coats, Ji et al. 2007), this increased shear 

modulus may increase impact forces by 3.5% and decrease impact durations by 2%. This 

change would alter our largest force measurement (621 N) by 22 N. However, this slight 

overestimation may be beneficial by compensating for the slightly lower compliance of the 

surrogate head at dynamic rates compared to cadaver studies.

In addition to head compliance, the initial positioning of the surrogate could contribute to 

changes in the head impact kinematics between the two studies. In the present study, the 
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head and body were kept in line and angled downward together (as depicted in Panel A in 

Figures 2 and 3), which likely decreased head rebound compared to the previous surrogate 

study which positioned the surrogate supine with only the head angled downward. The head 

impact force peaked during a period when only the head was in contact with the ground 

(Figures 2 and 3), and did not substantially differ between parietal and occipital impacts. 

The orientation of the body, therefore, does not appear to substantially influence peak 

impact force. This is supported further by a similarity in our measurements of peak occipital 

head impact force (295±42 N) to the impact force measured in a single infant cadaver head 

with no body or neck (336 N) reported by Prange, Luck et al. (2004) However, the average 

contact duration in our studies (0.024±0.002 sec) were greater than that reported by Prange 

(0.020 sec). This was likely due to the presence of a neck and body in our study. The neck 

tethers the head to the torso, which is continuing to move downward while the head is trying 

to rebound upward. The head kinematics are therefore substantially affected by the 

positioning of the entire multicomponent system from this point forward. In fact, the peak 

angular velocity of both occipital and parietal impacts in the present study occurred after the 

body impact (Figures 2 and 3). The peak angular acceleration occurred after the body 

contacted the flooring for occipital impacts, but prior to body contact for parietal impacts. 

Prior surrogate studies (Duhaime, Gennarelli et al. 1987, Prange, Coats et al. 2003, Coats 

and Margulies 2008) and the present study all agree that the neck and body have a 

substantial effect on the head kinematics, and needs to be carefully considered in 

biomechanical analysis.

One important difference between the two studies was the resulting head rotation direction 

following an occipital impact. In the prior study, head rotations in the sagittal and horizontal 

planes equally dominated the kinematic response (10,633 rad/s2 and 8,048 rad/s2, 

respectively, for 61 cm fall onto concrete). In this study, sagittal head rotations were more 

dominant than horizontal rotations following an occipital impact (3,348 rad/s2 and 536 

rad/s2, respectively, for 61 cm fall onto concrete). There are two factors that likely 

contribute to this change. First, whereas sagittal angular accelerations were measured 

directly in both models, the horizontal and coronal angular accelerations were calculated in 

the previous surrogate. The horizontal calculations tended to overestimate measured values. 

Second, the previous design used a twisted rope as the base of the neck and may have been 

predisposed to horizontal rotations. The current neck design was created with tygon tubing 

surrounded by a solid silicone rubber body. There is currently no information on the 

torsional properties of the infant neck, so we are unable to determine appropriate design 

parameters for torsional stiffness.

4.2 Effect of Head Impact Location

Our goal was to evaluate a worst-case scenario, where the head impact is unimpeded by 

previous or simultaneous contact with other body regions. As such, the surrogate starting 

position was angled approximately 20 degrees for occipital impacts and 30 degrees for 

parietal impacts as illustrated in panel A of Figures 2 and 3. The larger angle for parietal 

impacts was necessary so that the head impacted before the shoulder. If this larger angle was 

used for occipital impacts, the impact location would no longer be on the occipital 

prominence, but rather on the posterior fontanel or along the sagittal suture. Our surrogate 
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positioning was successful in producing similar head impact forces for parietal and occipital 

headfirst impacts. However, peak angular accelerations and velocities that occurred as a 

result of those impact forces were different between parietal and occipital head impacts. The 

peak resultant angular acceleration after a parietal impact increased more sharply with 

increases in impact force than after an occipital impact (Figure 7A and B), perhaps due to its 

steeper initial angle of inclination. For example, 91 cm (3 ft) falls with parietal impacts onto 

concrete had a much greater average resultant peak angular acceleration (6,962 rad/s2) than 

occipital impacts (3,693 rad/s2). The peak resultant angular velocity, however, was overall 

higher after an occipital impact than a parietal impact (Figure 7C and D). It is worth noting 

that the peak angular acceleration primarily occurs during the impact event, while the peak 

angular velocity occurs during the rebound (Figures 2 and 3). Again, these differences may 

be associated with the initial angles of inclination.

Not surprisingly, the occipital impacts resulted in angular velocities and accelerations 

primarily in the sagittal plane, with much smaller velocities and accelerations in the coronal 

and horizontal planes. Parietal impacts began with head rotations primarily in the coronal 

plane, as anticipated, but after this initial coronal rotation the head then rolled in the sagittal 

plane towards the chest.

There is broad agreement in the literature that impact location and the subsequent rotational 

direction of the head plays an important role in the development and severity of injury. Both 

the magnitude of the inertial response (velocity and acceleration) and the relative direction-

specific vulnerability of the brain tissue injury response contribute to injury outcomes in 

children and adults. Pellman and colleagues reconstructed game impacts of concussed 

professional football players with Hybrid III test dummies and found significantly lower 

peak head accelerations resulted in concussion when the impact was to the facemask than 

when the impact was to other parts of the helmet shell.(Pellman, Viano et al. 2003) Broglio 

et al. measured head impact kinematics in high school football players both with and without 

resulting concussion. Impacts to the front and back of the helmet, as well as impacts to the 

top of the helmet, more commonly resulted in concussion.(Broglio, Schnebel et al. 2010) 

Similar to these human studies, sagittal head rotations in immature piglets have been shown 

to result in overall worse outcomes. Margulies et al. report longer durations of 

unconsciousness, larger decreases in cerebral blood flow, greater behavioral changes, and 

more persistent axonal injury following sagittal head rotation compared to other rotational 

directions.(Eucker, Smith et al. 2011, Sullivan, Friess et al. 2013) However, TBI studies in 

adult primates report that coma and diffuse axonal injury was more severe after coronal 

plane head rotations.(Gennarelli, Thibault et al. 1982) Furthermore, a finite element model 

analysis of the effect of head rotation direction on strain reported that human head rotations 

in the horizontal plane resulted in the largest distribution of high strains.(Weaver, Danelson 

et al. 2012) These data highlight the importance of head rotation direction on outcome, but 

disagreement among the conclusions suggests more research is needed to determine 

direction-specific thresholds for traumatic brain injury.
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4.3 Effect of Height and Surface

As expected based on other epidemiology and biomechanical studies,(Coats and Margulies 

2008, Haney, Starling et al. 2010, Ibrahim and Margulies 2010, Thompson, Bertocci et al. 

2011) we found that higher falls (91 cm or 3 ft) significantly increased impact force, peak 

angular acceleration, and peak resultant angular velocity for both impact locations when 

compared to 30 cm (1 ft). Impacts onto concrete or laminate hardwood produced similar 

kinematics, which were higher than impacts onto crib mattress. Falls onto carpet had 

significantly lower peak impact forces than concrete for both occipital and parietal impacts, 

and they had significantly lower peak angular accelerations in all rotational directions for 

parietal impacts. However angular velocity following a fall onto carpet did not differ 

significantly from concrete.

4.4 Injury Risk

Much effort has been made to determine kinematic thresholds for head injury based on 

primate head injury studies (Duhaime, Gennarelli et al. 1987, Margulies and Thibault 1992, 

Ommaya, Goldsmith et al. 2002), human cadaver experiments (Depreitere, Van Lierde et al. 

2006), and injuries reported in helmet-instrumented football players. (Broglio, Schnebel et 

al. 2010, Rowson, Duma et al. 2012) Developmental changes in physiology, anthropometry, 

and brain tissue mechanical properties make it impractical to use these thresholds for the 

prediction of head injury in an infant. Furthermore, the rotational direction of the head 

following impact is an important component in the severity of injury; however, published 

head injury thresholds do not take into account head rotation direction, but rather attempt to 

provide a single cutoff value for injury regardless of the impact location and subsequent 

rotational direction. Epidemiological studies investigating injuries from low height falls 

provide useful insight into the trends of injury, but statistical groupings span several ages 

(e.g., 0–5 years old), several heights (e.g., 0–5 feet) and multiple types of falls (e.g., head 

first, feet first, parietal impact, occipital impact, etc). It is therefore impractical to determine 

probabilities of injury on a case by case basis using this data.

With these limitations in mind, we decided to compare the loads from the low height falls in 

the present study to published kinematic thresholds and existing epidemiology data solely as 

a qualitative assessment of injury risk. The threshold for concussion scaled to infant brain 

mass (400g) has been proposed to be between 10,000 and 15,000 rad/s2 peak angular 

acceleration based on adult primate data (Duhaime, Gennarelli et al. 1987, Ommaya, 

Goldsmith et al. 2002) and instrumented football helmet data, respectively. (Broglio, 

Schnebel et al. 2010, Rowson, Duma et al. 2012) No resultant acceleration for any occipital 

impact fall exceeded this lower bound. For parietal impacts, the lower bound was exceeded 

for 2/10 falls from 61 cm (2 ft) onto concrete, 1/10 falls from 91 cm onto concrete, and 2/10 

falls from 91 cm onto hardwood laminate. The higher bound of 15,000 rad/s2 was exceeded 

only for one 91 cm fall onto concrete (peak angular acceleration of 15,085 rad/s2). When 

averaging across all fall trials for a fall height, impact surface, and impact location, none of 

these average peak angular accelerations exceeded the 10,000 rad/s2 concussion threshold 

lower bound. Mayr et al (1999) reported 13.6% of children (7–30 months old; mean=13 

months) experienced a concussion following a fall from a highchair. Tarantino et al. (1999) 

reported 11% of 167 children (< 10 months old) experienced a closed head injury following 
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a < 4 ft fall. These statistics are comparable to the percentage of parietal 3ft falls detailed 

above that exceeded the lower threshold (3 out of 20, or 15%).

Thresholds for subdural hemorrhage (SDH) have been proposed to be between 10,000 and 

35,000 rad/s2 based on adult human cadaver impacts (Depreitere, Van Lierde et al. 2006) 

and primate data (Duhaime, Gennarelli et al. 1987), respectively. Once again, a few 61–

91cm falls onto concrete or hardwood laminate had peak angular accelerations in excess of 

the 10,000 rad/s2 subdural hemorrhage threshold, none of the average peak angular 

accelerations exceed 10,000 rad/s2 and not a single trial had a peak angular acceleration 

greater than or equal to 35,000 rad/s2. The presence of subdural hemorrhages in low height 

falls of infants is noticeably absent in the epidemiological fall literature. Thompson et al. 

(2011), report 2 subdural hematomas in 79 falls in children < 4 years old. The cases 

involved a 42 month old and 1 month old child. The one-month old child was sleeping on 

his mother’s chest and rolled over, striking his head on a humidifier before falling 0.89 m 

onto the ground. Assuming the lower threshold for concussion is the same as for SDH, we 

would again predict SDH in 15% of our 3ft parietal falls onto hard surfaces. However, based 

on the comparison with the epidemiology literature, it is likely that this lower SDH threshold 

is inaccurate.

Specific impact force tolerances for pediatric skull fracture have not been published, and 

scaling fracture tolerances from adult studies is unrealistic given the distinct differences in 

cranial bone structure between children and adults. Helfer et al. (1977) reported 2 skull 

fractures in 161 children < 5 years old that fell from a bed or sofa. Both children were under 

2 years old. Mayr et al. (1999) reports 16% of 103 children 7–30 months experienced a skull 

fracture following a fall from a highchair. Tarantino et al. (1999) reported 17% of 167 

infants < 10 months old had a skull fracture in falls < 4 ft. Future work will incorporate the 

fall kinematic data in this study with published pediatric skull ultimate stress data (Coats and 

Margulies 2006) to develop risk curves for skull fracture.

While this surrogate significantly advances the state of the art in ATDs by increasing the 

biofidelity of the neck, there are still two limitations of the surrogate. First, although the 

bending stiffness of the surrogate’s neck was obtained quasistatically, and is in the range of 

published values (Luck 2012 and Luck 2008), it is possible that because the surrogate neck 

bending stiffness was at the low end of the derived range for flexion and the high end of the 

derived range for extension, the exaggerated flexion-extension difference could influence 

the measured kinematics, particularly for occipital impacts.. Second, the infant neck 

properties in lateral bending and torsion are unknown and thus, not validated in this design. 

With occipital impacts, the primary direction of rotation was sagittal (anterior-posterior) and 

would be affected minimally by lateral and torsional stiffness. Impacts to the parietal skull 

resulted in both coronal and sagittal rotation. We speculate that coronal rotation would be 

influenced most by lateral neck bending properties. The torsional stiffness would affect the 

twisting of the head toward the chest, and subsequent sagittal rotation, as described earlier.

In summary, this study presents the kinematics of short falls using a biofidelic infant 

surrogate with improved neck bending and tensile properties designed to mimic recently 

published infant cadaver properties, with intracranial contents matched to the shear modulus 
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of brain tissue, and with advanced instrumentation to directly measure three-dimensional 

angular velocities and impact force. Skull compliance, neck bending, and tensile properties 

significantly influenced the measured kinematic loads. By increasing the skull compliance, 

the impact force and peak angular acceleration were substantially decreased from previously 

published results, lowering the expected injury risk. While more compliant impact surface 

materials (e.g. crib mattress versus concrete) and lower fall heights reduce kinematic 

responses as we have reported previously, herein we now report that occipital and parietal 

impacts have distinct kinematic responses both in terms of the direction of head rotation and 

the magnitude of the rotational velocities and accelerations, and greater response to 

variations in fall height and impact surface stiffness. These direction-specific kinematic data 

will become critical to identifying probabilities of injuries from low height falls in children 

when pediatric injury threshold data becomes available.
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Highlights

• Falls are a major cause of traumatic head injury in children.

• Biomechanics can inform the evaluation of injury risk and design of mitigating 

strategies.

• We used a state-of-the-art custom surrogate with life-like neck, skull, and brain 

properties to study parietal and occipital impacts after head-first falls onto 4 

impact surfaces from 3 fall heights.

• The improved biofidelity of the neck lowered impact forces, angular 

accelerations, and velocities, and produced predominantly sagittal rotations after 

occipital impact.

• Impact site influenced head response, and injury risk due to short falls should 

take into account the fall height, impact surface and head impact location.
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Figure 1. 
A) Anthropomorphic surrogate with improved neck biofidelity. The neck consisted of a 

silicone rubber body (1), double neoprene rubber bands to increase stiffness in extension (2), 

a threaded connector to attach to the body (3), and Tygon tubing molded into the center of 

the silicone rubber to increase the tensile stiffness (4). B) Force-displacement curve of the 

infant surrogate neck compared to infant (24-day-old) cadaver whole cervical spine (data 

digitized from Luck et. al.(Luck, Nightingale et al. 2008)).

Sullivan et al. Page 18

Accid Anal Prev. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Example force, sagittal angular velocity, sagittal angular acceleration traces, and 

corresponding surrogate position in response to a 61 cm (2 ft) drop onto concrete with 

occipital impact (845 Hz cutoff frequency). A) Surrogate position the moment before 

impact. B) The point of peak head impact force corresponds with first peak in angular 

acceleration and is clearly distinguishable from body impact force. C) The point where the 

body begins to impact, also causing the second peak in angular acceleration. D) The point of 

peak angular velocity as the head is rotating toward the chest. Black dots indicate points of 

peak-to-peak change in velocity. E) The peak angular deceleration occurs when the chin hits 

the chest. F) The position of the head after it has rebounded from impact with chest and is 

fully rotated toward the back.
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Figure 3. 
Example force, coronal angular velocity, coronal angular acceleration traces, and 

corresponding surrogate position in response to 61 cm (2 ft) drop onto concrete with parietal 

impact (734 Hz cutoff frequency). A) Surrogate position the moment before impact. B) The 

point of peak head impact force corresponds with peak in angular acceleration and is clearly 

distinguishable from body impact force. C) The moment the body impact begins as the head 

is rotating counterclockwise at almost the peak angular velocity. Black dots indicate points 

of peak-to-peak change in velocity. D) The head reaches its maximum rotational excursion, 

but it does not impact the opposing shoulder. E) The head rotates back clockwise, and the 

chin rolls into the chest, resulting in a large sagittal angular velocity (sagittal trace not 

shown).
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Figure 4. 
Peak head impact forces and durations for occipital (A) and parietal (B) impacts from 30 cm 

(1 ft), 61 cm (2 ft), and 91 cm (3 ft) onto different surfaces. It was impossible to isolate a 

head impact force and duration for impacts onto the crib mattress. The overall peak force is 

plotted here for mattress impacts. This is an overestimate of the force experienced by the 

head. Mean ± standard error.
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Figure 5. 
Peak angular acceleration for occipital (A) and parietal (B) impacts from 30 cm (1 ft), 61 cm 

(2 ft), and 91 cm (3 ft) onto different surfaces. Mean ± standard error.
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Figure 6. 
Peak-to-peak angular velocities for occipital (A) and parietal (B) impacts from 30 cm (1 ft), 

61 cm (2 ft), and 91 cm (3 ft) onto different surfaces. Mean ± standard error.

Sullivan et al. Page 23

Accid Anal Prev. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Impact force vs. peak resultant angular acceleration and peak resultant angular velocity with 

each carpet, hardwood laminate, and concrete drop represented as one data point. Drops 

onto mattress are not included here due to limitations for measuring the head impact force 

precisely.
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Table 1

Compressive stiffness (average ± SD) from infant cadaver testing (Prange, Luck et al. 2004) and surrogate.

Stiffness (N/mm)

Direction - Rate Infant Cadaver Surrogate

AP - 0.05 mm/s 6.9 ± 2.4 4.2 ± 0.23

AP – 1 mm/s 20.8 ± 6.7 5.1 ± 0.29

RL - 0.05 mm/s 7.9 ± 1.6 4.5 ± 0.85

RL – 1 mm/s 25.7 ± 7.8 5.1 ± 0.32

AP = anterior-posterior compression, RL = right-left lateral compression.
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